제품

SurveyMonkey는 모든 사용 사례와 요구를 다루도록 구축되었습니다. 제품을 둘러보고 SurveyMonkey로 어떤 효과를 누릴 수 있는지 알아보세요.

온라인 설문조사의 글로벌 리더로부터 데이터 기반 인사이트를 얻으세요.

하나의 강력한 플랫폼에 있는 핵심 기능과 고급 도구를 살펴보세요.

정보 수집과 결제를 위한 온라인 양식을 만들고 맞춤화하세요.

100개 이상의 앱 및 플러그인과 연동하여 업무 효율성 향상

시장 조사에 필요한 모든 것을 갖춘 솔루션

빌트인 AI을 통한 더 나은 설문조사 작성과 빠른 인사이트 발견

템플릿

비즈니스에 대한 고객 만족도와 충성도를 측정

고객을 만족시켜 지지자로 만드는 것이 무엇인지 파악

실행 가능한 인사이트를 얻어 사용자 경험을 개선

잠재 고객, 참석자 등으로부터 연락처 정보를 수집

다음 이벤트를 위해 쉽게 RSVP를 받고 확인

다음 이벤트의 개선을 위해 참석자가 무엇을 원하는지 파악

참여도를 높이고 더 나은 결과를 이끌어낼 인사이트를 발견

참석자들의 피드백을 받아 회의 운영 방법을 개선

동료 피드백을 통한 직원 성과 향상

더 나은 코스를 만들고 교수법을 개선

학생들이 코스 자료 및 프레젠테이션을 어떻게 평가하는지 파악

신제품 아이디어에 대한 고객의 생각을 파악

리소스

설문조사 및 설문조사 데이터 사용에 대한 모범 사례

설문조사, 비즈니스를 위한 팁 등에 관한 블로그

SurveyMonkey 이용에 대한 튜토리얼 및 사용법 가이드

최고의 브랜드들이 SurveyMonkey로 성장을 견인하는 방법

영업팀에 문의로그인
영업팀에 문의로그인

What is choice modeling?

Choice modeling offers real data from your target market, and SurveyMonkey can set you up for success.

Your customers can tell you what they like and what they’ll buy, but they can’t always explain why they choose one brand over another. Unless they are marketers themselves, they may not fully understand the role of price, brand image, packaging, brand name, promotions, and advertising in their decision to purchase. 

Choice modeling, a type of preference structure modeling, is a powerful tool for understanding what drives customer interest and purchase decisions. It’s considered to be the most scientifically robust way to discover and understand how customers make choices.

Let’s take a closer look at choice modeling and how it can fit into your marketing strategy. 

Choice modeling is an analytical method that is used to simulate consumer shopping behavior.

Research participants are unaware of what is being measured as they are presented with visual choices with marketing variables such as advertising, pricing, packaging, features, etc. Participants are asked to make trade-offs among the provided options, ultimately choosing what they value most from those options.

Inferences drawn from participant decisions are used to predict the likelihood of a customer choosing one product or feature over another.

The data provides deeper insights into what is important to your target market, allowing you to make insightful, data-driven business decisions for various dilemmas, including:

  • Price setting for profitability
  • Bundling features
  • Product positioning
  • Viability of a concept
  • Media effectiveness
  • Promotions
  • Advertising messages
  • Packaging

The most significant advantage of choice modeling is that it provides deeper insight into your target market’s values. Other advantages include:

  • Respondents must consider trade-offs between attributes revealing the most valued attributes
  • Definitive frame of reference through a predetermined array of attributes and alternatives
  • Enables prices to be estimated for each attribute by assigning value
  • Identify an optimal mix of features to create a product your target market would deem valuable and the price they are willing to pay
  • Can be used in most cases for a hard estimate of current and future preferences

As with any research method, there are limitations to be considered. These limitations include:

  • Discrete choices only provide ordinal data
  • A large amount of data is required to assure statistical significance
  • Cost and time may be higher than other methods

Choice modeling says that individuals make decisions based on weighing the utility of each alternative—choosing the option with the highest utility. This is accomplished using the logistic statistical model to determine the probability of future events.

There are three main steps to choice modeling:

  1. Identify your product’s key factors: This is most effectively accomplished via focus groups. You can explore consumer buying motivations and impressions of your product or service with a trained facilitator. With that information, you can develop hypotheses about the key factors that influence their choices.
  2. Test your hypotheses: In this step, you’ll use surveys in one of two ways. First, for existing products, you can survey your target market to find out what they usually buy or have purchased in the past in your product category. 

The second option is to present survey participants with a set of choice experiments. Each experiment presents a hypothetical marketplace that contains a set of products. The products are described, and the participants are asked what they would do in terms of purchasing—buy a product, not buy anything, or buy later. Additional experiments vary pricing and other product characteristics, and participants make choices each time based on the new information.

  1. Statistical analysis: Analyze your collected data to draw inferences, identify trends, and generate insights about what your target market values most.

There are four main types of choice modeling analysis. The type you use depends on your technological knowledge and what type of data and insights you are seeking.

R is a free, open-source programming language created by statisticians for working with data. R-Language is frequently used to analyze large datasets with complex variables. R can handle both discrete (nominal or ordinal) and probabilistic variables. It runs on a wide variety of UNIX platforms, Windows, and Mac OS. R can be used for statistical analysis and visualization of your SurveyMonkey data. R is known for being difficult to learn for those with limited experience in programming.

Another type of choice modeling is conjoint analysis, also known as trade-off analysis. Conjoint analysis is based on the concept that any offering from a company can be broken down into a set of attributes that impact a customer’s perceived value of the offering.

Use conjoint analysis to determine the most influential attributes on a survey participant’s decision to purchase. 

Your survey structure for conjoint analysis should ask participants to rank the importance of specific attributes or to choose between different combinations of features and prices. 

Sample conjoint exercise

During analysis, a value is assigned to each attribute. The data can then be used to decide the combination of features that will be most attractive to customers and at what price they are willing to make a purchase.

Yet another method of determining the probability that a consumer will choose a particular alternative is discrete choice modeling. This is best for product categories that see one purchase used over a long period of time or products that have many features, such as smartphones.

In discrete choice modeling, both current and potential customers are asked to view a realistic scenario that includes all of the competing products in the marketplace. They are then presented with varying combinations of marketing strategies and asked which product they would purchase based on that marketing. 

Volumetric choice modeling is common for businesses in product categories that experience multiple product purchases in short amounts of time and where repeat purchase volume is important. In this type of modeling, current and potential customers are provided with a realistic shopping scenario that includes all of the competing products in the particular marketplace. They are asked to indicate how many of each product they would buy. This reveals the role and importance of marketing variables in a situation where varying quantities of multiple brands can be purchased.

Choice modeling effectively determines what’s important to your customers and potential customers when making purchase decisions. Start using choice modeling today to test product features for implicit value, the effectiveness of marketing campaigns, set pricing structures, and more. 

SurveyMonkey has a variety of market research services available, including product optimization, price sensitivity analysis, and survey design. Explore all of our market research solutions to optimize your marketing campaigns and brand success.

To read more market research resources, visit our Sitemap.