제품

SurveyMonkey는 모든 사용 사례와 요구를 다루도록 구축되었습니다. 제품을 둘러보고 SurveyMonkey로 어떤 효과를 누릴 수 있는지 알아보세요.

온라인 설문조사의 글로벌 리더로부터 데이터 기반 인사이트를 얻으세요.

하나의 강력한 플랫폼에 있는 핵심 기능과 고급 도구를 살펴보세요.

정보 수집과 결제를 위한 온라인 양식을 만들고 맞춤화하세요.

100개 이상의 앱 및 플러그인과 연동하여 업무 효율성 향상

시장 조사에 필요한 모든 것을 갖춘 솔루션

빌트인 AI을 통한 더 나은 설문조사 작성과 빠른 인사이트 발견

템플릿

비즈니스에 대한 고객 만족도와 충성도를 측정

고객을 만족시켜 지지자로 만드는 것이 무엇인지 파악

실행 가능한 인사이트를 얻어 사용자 경험을 개선

잠재 고객, 참석자 등으로부터 연락처 정보를 수집

다음 이벤트를 위해 쉽게 RSVP를 받고 확인

다음 이벤트의 개선을 위해 참석자가 무엇을 원하는지 파악

참여도를 높이고 더 나은 결과를 이끌어낼 인사이트를 발견

참석자들의 피드백을 받아 회의 운영 방법을 개선

동료 피드백을 통한 직원 성과 향상

더 나은 코스를 만들고 교수법을 개선

학생들이 코스 자료 및 프레젠테이션을 어떻게 평가하는지 파악

신제품 아이디어에 대한 고객의 생각을 파악

리소스

설문조사 및 설문조사 데이터 사용에 대한 모범 사례

설문조사, 비즈니스를 위한 팁 등에 관한 블로그

SurveyMonkey 이용에 대한 튜토리얼 및 사용법 가이드

최고의 브랜드들이 SurveyMonkey로 성장을 견인하는 방법

영업팀에 문의로그인
영업팀에 문의로그인

How to use an ordinal scale to organize your survey questions

How to use an ordinal scale to organize your survey questions

Receiving actionable data based on people’s attitudes can be challenging. After all, measures of attitude are complex, and more often than not, highly subjective. Luckily, you can use an ordinal scale in your survey to collect useful data about your respondents’ opinions, perceptions, performance, and sentiments. The straightforward ordinal scale is a down-to-earth way to approach abstract questions in your surveys.

An ordinal or “ordered” scale allows you to evaluate a respondent’s attitude towards a subject by using a set of ordered responses. For example, responses can include: “very satisfied,” “satisfied,” “dissatisfied,” and “very dissatisfied.” In an ordinal scale, the order of answer options is what’s significant—you can’t quantify the exact difference between each answer option. The difference between responses like “very satisfied” and “satisfied,” for example, is relative, not exact.

Most of us have plenty of real-life experience with ordinal scales. Ordinal scales can help you do things like:

  • Understand nuanced opinions. Do respondents “agree” or “strongly agree” with a stance on an issue?
  • Uncover perceptions. Do respondents find a particular statement “false,” “mostly false,” “mostly true,” or “true”?
  • Measure relative performance. Is a certain employee “more productive,” “just as productive,” or “less productive” than other employees?
  • Gauge sentiment. Is a customer “very satisfied,” “satisfied,” “dissatisfied,” or “very dissatisfied” with a recent purchase?

As you can tell, the ordinal scale works across a variety of use cases. But what does it look like when it’s in use?

While not all ordinal scales are Likert scales like the ones above (or Likert-type scales if you want to get technical) all Likert scales are ordinal. This popular form of survey question offers respondents an ordered range of answers from one extreme to another. Take, for example, these questions from our Employee Satisfaction Survey Template:

How meaningful is your work?

  • Extremely meaningful
  • Very meaningful
  • Moderately meaningful
  • Slightly meaningful
  • Not at all meaningful

How challenging is your job?

  • Extremely challenging
  • Very challenging
  • Moderately challenging
  • Slightly challenging
  • Not at all challenging

These Likert scale questions measure each employee’s perception of the work they do using various ordinal, i.e. ordered, scales. Other Likert scale questions measure sentiment with a balance of positive, negative, and neutral answers:

Are you satisfied with your employee benefits, neither satisfied nor dissatisfied, or dissatisfied with them?

  • Extremely satisfied
  • Moderately satisfied
  • Slightly satisfied
  • Neither satisfied or dissatisfied
  • Slightly dissatisfied
  • Moderately dissatisfied
  • Extremely dissatisfied

In the Question Bank, you’ll find numerous survey questions that use ordinal scales. But we’ll walk you through how to write them on your own.

Just follow these steps:

1. Identify a focus for your question by deciding which opinion, perception, performance, or sentiment you’d like to collect data on. Decide whether to use a unipolar scale or bipolar scale. Unipolar scales measure the absence or presence of a single item—”not at all interested” to “extremely interested,” for instance. Bipolar scales ask respondents how their attitudes fall on two different sides of neutrality—”strongly disagree” to “strongly agree,” for example.

2. For unipolar questions, decide which single variable—like the level of “meaning” or “challenge”—to include in your scale. For bipolar questions, decide which two opposing variables—like “agree” and “disagree” or “satisfied” and “dissatisfied”—to include in your scale.

3. Create a set of ordered responses using your variable(s). While the difference between responses is always relative in ordinal scales, try to choose options that are somewhat evenly spaced from each other. For bipolar questions, include an equal number of responses for each opposing variable to avoid skewing your results.

If you plan on using the same ordinal scale for multiple survey questions, consider combining them into a single matrix/rating scale question. If you plan on tailoring an ordinal scale to each question, use classic multiple choice questions instead.

Note: Keep in mind that matrix questions can easily become overwhelming to answer. If you decide to use one, limit its size to 5 rows and 5 columns.

For multiple choice questions that use an ordinal scale, you can look at the responses both individually and collectively. In either case, you can easily compare the relative popularity of each choice to identify key takeaways. Matrix/rating scale questions provide a similar level of analysis but also give you the weighted averages from each choice.

Does this level of analysis sound overwhelming? The good news is you don’t have to do it on your own. SurveyMonkey Analyze automatically collects your response data and allows you to create charts and graphs from your closed-ended questions with the click of a button.

So take the time to write survey questions that use an ordinal scale. The responses will help you align with your respondents’ opinions, perceptions, performance, and sentiments.

Frau mit roten Haaren erstellt eine Umfrage auf einem Laptop

역할 또는 업계에서 피드백을 활용할 수 있도록 돕기 위해 디자인한 도구 키트를 살펴보세요.

Ein Mann und eine Frau sehen sich einen Artikel auf ihrem Laptop an und schreiben dabei Informationen auf Notizzettel

퇴사자 인터뷰 설문조사에서 올바른 질문을 하여 직원 감소율을 낮추세요. 직원 양식 작성기 도구와 템플릿으로 지금 시작하세요.

Lachender Mann mit Brille vor einem Laptop

맞춤 동의서 양식으로 필요한 허가를 받으세요. 지금 무료로 가입하여 동의서 양식 템플릿으로 간편하게 양식을 만드세요.

Frau sieht sich Informationen auf ihrem Laptop an

요청 양식을 수월하게 만들고 맞춤화하여 직원, 고객 등으로부터 요청을 받으세요. SurveyMonkey의 전문가가 작성한 템플릿으로 단 몇 분만에 시작할 수 있습니다.