제품

SurveyMonkey는 모든 사용 사례와 요구를 다루도록 구축되었습니다. 제품을 둘러보고 SurveyMonkey로 어떤 효과를 누릴 수 있는지 알아보세요.

온라인 설문조사의 글로벌 리더로부터 데이터 기반 인사이트를 얻으세요.

하나의 강력한 플랫폼에 있는 핵심 기능과 고급 도구를 살펴보세요.

정보 수집과 결제를 위한 온라인 양식을 만들고 맞춤화하세요.

100개 이상의 앱 및 플러그인과 연동하여 업무 효율성 향상

시장 조사에 필요한 모든 것을 갖춘 솔루션

빌트인 AI을 통한 더 나은 설문조사 작성과 빠른 인사이트 발견

템플릿

비즈니스에 대한 고객 만족도와 충성도를 측정

고객을 만족시켜 지지자로 만드는 것이 무엇인지 파악

실행 가능한 인사이트를 얻어 사용자 경험을 개선

잠재 고객, 참석자 등으로부터 연락처 정보를 수집

다음 이벤트를 위해 쉽게 RSVP를 받고 확인

다음 이벤트의 개선을 위해 참석자가 무엇을 원하는지 파악

참여도를 높이고 더 나은 결과를 이끌어낼 인사이트를 발견

참석자들의 피드백을 받아 회의 운영 방법을 개선

동료 피드백을 통한 직원 성과 향상

더 나은 코스를 만들고 교수법을 개선

학생들이 코스 자료 및 프레젠테이션을 어떻게 평가하는지 파악

신제품 아이디어에 대한 고객의 생각을 파악

리소스

설문조사 및 설문조사 데이터 사용에 대한 모범 사례

설문조사, 비즈니스를 위한 팁 등에 관한 블로그

SurveyMonkey 이용에 대한 튜토리얼 및 사용법 가이드

최고의 브랜드들이 SurveyMonkey로 성장을 견인하는 방법

영업팀에 문의로그인
영업팀에 문의로그인

What is cluster sampling?

Dividing and organizing a population into multiple groups (or clusters) allows for efficient analysis of large volumes of research.

Before introducing a new product or service, it’s best to research if there’s a need. Testing the marketplace to determine consumers' needs is a strategic way to determine if people are interested in buying what you have to sell. Conducting online feedback and insights is the most efficient way to understand the wants and needs of consumers. 

Since it’s impossible to collect information on every single consumer, it’s better to single in on a market that best fits the profile of the people you want to reach. While that is also a challenge, it doesn’t have to be difficult to achieve when implementing cluster sampling into your marketing research. This article will define cluster sampling and explain its different types. You’ll also learn how to use cluster sampling and understand the difference between stratified sampling.

Cluster sampling is an efficient way to study large populations. It’s a probability sampling technique that helps you optimize a target audience to include people who will most likely interact with your company’s products or services because even in a target audience, there will be people who aren’t relevant to your market. That's why cluster sampling is so efficient because it allows you to refine your target audience to get the best possible insights. 

It would be best if you used cluster sampling because it's budget-friendly, and you won't spend as much time as you would collecting information from a larger population. Because you can refine a target audience, the insights will be made to work universally for decision-makers, C-suite, and your most senior research experts. Furthermore, you can be confident the quality of insights is credible because the people who make up your cluster sample better fit the profile of potential customers. 

Here’s a quick checklist of the benefits of cluster sampling:

  • Economical (time and money) - The less time spent on a market research project, the more time you can spend on other ways to grow and sustain your business.  
  • Convenience - It’s an efficient way to collect information on a large group of people who are geographically distanced from each other.
  • Data accuracy - Representation of each cluster will reduce inaccuracy and variability.
  • Ease of implementation - Using an agile experience management platform can help you better understand the market and elevate your brand.  

Conversely, the disadvantages of cluster sampling can result in spending more time and money on your market research if the cluster sample is done inaccurately. Cluster sampling demands meticulous and complex planning. Skimming over this approach can render unreliable insights. The sample population won’t accurately fit the intended target buying audience, making your data challenging to analyze. 

Here’s a quick list of some challenges of cluster sampling: 

  • Imprecise results if clusters aren’t created properly - Creating a cluster sample that doesn’t properly mirror your target audience will render inaccurate results. 
  • Difficult to analyze - Analyzing cluster samples means studying a lot of data. Get experience management design and programming assistance for better insights. 
  • Complexity - Cluster sampling means organizing multiple target audiences. This process requires systematic research to develop efficient and diverse sampling.

Cluster sampling is useful when collecting insights from a large population. It's especially useful when you need to gain insights from several populations within a geographical distance. Without the option of cluster sampling, you would have to do quite a bit of traveling to collect consumer information. Cluster sampling speeds up the research process making it more accessible to get information from large audiences. It also reduces travel expenses making this marketing approach more cost-efficient.  

Here’s a quick list of why you should implement cluster sampling in your online marketing strategy:

  • When clusters are heterogeneous, or have many subsets - Cluster sampling is the best way to section large populations into specific group sets.
  • Speed is a priority - Cluster sampling provides you with a faster way to sample multiple targeted audiences simultaneously.  
  • Geographic disparity complicates systematic sampling - Cluster sampling offers a more methodical approach toward sampling an inclusive audience.
  • A large group must be broken out into manageable portions - Cluster sampling provides a more manageable way to organize large populations.
  • Pinpoint accuracy is not the highest priority - Cluster sampling works best when you’re prepared for some small degree of variability. 
  • Cost is a factor - Cluster sampling allows you to sample a large audience from anywhere in the world without the expense of organizing focus groups in person.

While there are pros and cons to cluster sampling, there's also a way to increase the accuracy of a sample through stratified sampling. Stratified sampling uses a two-step method vs. cluster sampling's one-step. The stratified sampling process involves selecting homogeneous populations from within the clusters and dividing them into different segments or strata within that don't overlap. Create a stratified sample for your next marketing research project. While cluster sampling naturally separates the clusters for you, stratified sampling allows you to control the strata division. This approach will take more time vs. cluster sampling because you'll need to conduct in-depth research to represent your sample population accurately. Learn about the different types of sampling.

Cluster sampling can occur in one or multiple steps and is defined in stages: single-stage cluster sampling, two-stage cluster sampling, and multiple-stage cluster sampling. Here, you’ll learn the advantages and limitations of each stage. 

Single-stage or one-stage cluster sampling is randomly selected from each cluster. While one-stage sampling provides faster results, part of the population within the cluster might not be relevant to your target population. Including participants who don't fit the description of intended consumers could render skewed results, compromising your overall insights. This method is recommended when you need a quick sample but need to keep costs down.

The two-stage cluster sampling takes the one-stage method a step further. Here, you can select your cluster sample before implementing a random selection process. The two-stage approach allows you to set the boundaries of the sampling process where you can customize and fine-tune clusters implementing your experience and expertise. However, not having much knowledge in the field might result in an overlooked population and missed opportunities.

Multiple-stage cluster sampling is needed for complex research methods and will take more than two steps to complete. For instance, say you sell specialty golf clubs and want to sample a population of everyone who plays the sport in your country. Instead of interviewing every single person, you'll engage in the two-step cluster sample by selecting cities where golf courses are. Next, you can choose the cities with the largest population to create the sample population. This approach takes more time, and while it can render better insights, multiple-stage cluster sampling might not be the best option if you're on a tight deadline. 

It's best practice to first understand the different approaches to cluster sampling before obtaining a cluster sample. It's also important to get the right audience, so your sample provides relevant insights to meet your business objectives. Conducting a cluster sample can be done in four steps: First, by getting the sample, dividing the sample into clusters, randomly selecting the clusters, and finally, collecting the data. Here's a more detailed explanation:    

Obtaining a sample requires you to define the population. This crucial step lays the groundwork for the entire process for your output's success. The population needs to match the intended audience you mean to sample for the research to be relevant to your overall business goals and objectives. Always ensure the target population you're sampling has some applicable association with the product or service researched.

The next step is to separate your sample into clusters. They should be diverse so that every characteristic of the sample population is represented, but the clusters should share similar characteristics. In other words, each cluster should be heterogenous from one another, but the clusters themselves ought to be homogenous. Every cluster is like a smaller representation of the sample population and should represent the whole sample together.

This step requires you to use the best type of cluster sampling to suit your business needs. Use one-stage cluster sampling if you're on a budget and have a tight deadline. Two-stage cluster sampling is useful if you have time to refine the sample population, and multiple-stage cluster sampling is good for customizing the strata when random sampling isn't what you want. Of course, this process takes more time than the two-stage sampling.

The final step is analyzing the data, which can quickly get complicated once all the respondents provide their insights because it's generally a lot of information to process, even if it is a sample. Remember, it's a sample of a larger population. Momentive, creator of SurveyMonkey, offers an agile experience management and insights solutions platform for a streamlined assessment of your cluster sampling data results.

Test a cluster sampling example to model your next market research and build a target audience that matches potential customers. Let us help you find your ideal audience today.

Collect market research data by sending your survey to a representative sample

Get help with your market research project by working with our expert research team

Test creative or product concepts using an automated approach to analysis and reporting

To read more market research resources, visit our Sitemap.