제품

SurveyMonkey는 모든 사용 사례와 요구를 다루도록 구축되었습니다. 제품을 둘러보고 SurveyMonkey로 어떤 효과를 누릴 수 있는지 알아보세요.

온라인 설문조사의 글로벌 리더로부터 데이터 기반 인사이트를 얻으세요.

100개 이상의 앱 및 플러그인과 연동하여 업무 효율성 향상

정보 수집과 결제를 위한 온라인 양식을 만들고 맞춤화하세요.

빌트인 AI을 통한 더 나은 설문조사 작성과 빠른 인사이트 발견

시장 조사에 필요한 모든 것을 갖춘 솔루션

기본서식

비즈니스에 대한 고객 만족도와 충성도를 측정

고객을 만족시켜 지지자로 만드는 것이 무엇인지 파악

실행 가능한 인사이트를 얻어 사용자 경험을 개선

잠재 고객, 참석자 등으로부터 연락처 정보를 수집

다음 이벤트를 위해 쉽게 RSVP를 받고 확인

다음 이벤트 개선을 위해 참석자가 무엇을 원하는지 파악

참여도를 높이고 더 나은 결과를 이끌어낼 인사이트를 발견

참석자들의 피드백을 받아 회의 운영 방법을 개선

동료 피드백을 통한 직원 성과 향상

더 나은 코스를 만들고 교수법을 개선

학생들이 코스 자료 및 프레젠테이션을 어떻게 평가하는지 파악

신제품 아이디어에 대한 고객의 생각을 파악

리소스

설문조사 및 설문조사 데이터 사용에 대한 모범 사례

설문조사, 비즈니스를 위한 팁 등에 관한 블로그

SurveyMonkey 이용에 대한 튜토리얼 및 사용법 가이드

일류 브랜드들이 SurveyMonkey로 성장을 견인하는 방법

What is the difference between a response rate and a completion rate?

If you have been in the online surveying business, you have probably heard terms like response rate and completion rate used frequently in articles and research reports and know that the higher the rate’s percentage the better.

But what do they really mean? How are they different? Let’s look at the true definition of both completion and response rates and how they relate to your online survey’s sample group and statistical accuracy.

When it comes to online surveying a completion rate refers to the number of surveys filled out and submitted divided by the number of surveys started by respondents. In other words, only the respondents who have actually entered your survey would be included in this statistic and only those respondents who completed the full survey would increase your completion rate. Below is an example of a calculated completion rate.

I have a survey with the following stats:

  • Emails sent: 1000
  • Number of respondents who entered the survey: 250
  • Number of completed surveys: 200

Let’s calculate the completion rate.

Completion rate = Number of completed surveys / Number of respondents who entered the survey

Completion rate = 80%

You’ll notice that the completion rate does not rely on the number of people contacted and is strictly based on people’s interaction with your survey. Because of this, a completion rate can, and should, be measured on any survey, including email, intercept, pop-up, embedded, and hybrids.

  1. Incomplete data: A low completion rate means your respondents are not filling out all the information you need. That means particular questions are going to have a lower level of reliability than other. Let’s say half your participants are dropping out of your survey before the last question, this would mean your last question has a lower sample size and therefore is more prone to be inaccurate.
  2. A frustrating survey experience: A low completion rate is your respondents sending you a message that they do not like the survey. You already have them in the survey attempting to fill out the questionnaire, but for some reason they are dropping out before giving you all the information you require. If you are in this situation, your survey may be too longhave poorly organized questions, ask personal or sensitive questions, or be seen as misleading to the respondents.

Prevent respondents from having a bad experience with your next survey by downloading our guide to ‘Writing Survey Questions Like a Pro.’ Download now→

Though deceivingly similar in description to completion rates, response rates provide valuable insight into the accuracy of your collected data. Put simply, a response rate refers to the number of people who completed your survey divided by the number of people who make up the total sample group. Here’s an example of a calculated response rate.

I have a survey with the following stats:

  • Emails sent: 1000
  • Number of respondents who entered the survey: 250
  • Number of completed surveys: 200

Let’s calculate the response rate.

Response rate = Number of completed surveys / Number of emails sent

Response rate = 20%

The important thing to remember is a response rate can only be calculated with a defined sample group. Meaning you need a contact list or record of the number of people being approached to take the survey. Unfortunately, deployment methods like pop-ups and website embeds make it difficult to define the number of people who are presented with the survey and can therefore render any measurement of a response rate unreliable. Usually, response rates are only used when the sample group is controlled by a fixed list of email addresses, telephone numbers, or home addresses.

  1. Higher level of error: The lower your response rate, the smaller your original sample group becomes. This could wreak havoc on your margin of error and the reliability of your results. Consider the fact that if we had a list of 278 potential respondents for a target population of 1000. Our survey sample size calculator says, with a 100% response rate, we’d have an industry standard margin of error of 5%. Lower our response rate to a relatively high 32%, and we are now looking at a 10% margin of error, effectively cutting the accuracy of your survey findings in half.
  2. Uninterested sample group: Beyond statistical inaccuracy, low response rates are an indicator that your potential respondents are simply not interested in taking part in your survey. You’ll need to find a way to entice more participants. First, ensure your email message and subject lines don’t look like spam and are branded properly in order to instill a sense of credibility. After this, it could be worth it to add in extra incentive to drum up interest from your sample group.
  3. Nonresponse bias: Sometimes a low response rate can be an indication of a nonresponse bias, which occurs when a certain demographic in your sample are not participating in the survey. Nonresponse errors or bias can appear for various reasons. Here is a short list of examples:
    • You sent the invite email during a religious or regional holiday
    • One email browser is labelling your email invites as spam
    • Your topic is a sensitive issue for certain contacts
    • Your topic is boring for certain contacts

The trick to eliminating nonresponse bias is to first pretest your survey and later to recognize and resolve any issues as it happens. Remember, there is nothing more detrimental to a survey’s findings than undetected bias. Not only does it hurt the credibility of your data, it will give your finding misleading results allowing you to draw incorrect conclusions.

So now that you know the difference between completion and response rates, you can view the results of surveys with a fresh perspective.

도구 키트 디렉터리

역할 또는 업계에서 피드백을 활용할 수 있도록 돕기 위해 디자인한 도구 키트를 살펴보세요.

SurveyMonkey Enterprise 기능 살펴보기

SurveyMonkey의 엔터프라이즈급 보안 기능, 개인정보 보호 및 규정 준수 기준, 데이터 연동 서비스로 규모에 맞게 피드백을 관리하세요.

최고의 브랜드들이 SurveyMonkey로 성장을 견인하는 방법

SurveyMonkey를 사용하여 성공적인 제품과 사용자 환경을 만들어 성장을 주도하는 일류 브랜드들의 대열에 합류하세요.

적시에 제공되는 브랜드 추적 인사이트로 브랜드 전략을 강화하세요

시간의 경과에 따라 브랜드 상태를 관리하고, 브랜드 인지를 높이며 브랜드 인식을 개선할 수 있는 도구를 이용하세요. 무료로 가입하여 오늘 브랜드 추적 설문조사를 사용해 보세요.